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Computational Techniques for Probabilistic Inference

Statement of the Problem Studied

Decision making typically is replete with uncertainty. In particular, there is uncertainty
due to incomplete and inexact models, and uncertainty secondary to incomplete and
erroneous data. Therefore, in general, it is important that computer systems that assist
in decision making be capable of representing and reasoning with uncertainty. In this
project we have explored the use of probability theory as a representation of uncertainty
in diagnostic systems. There are several advantages to using a probabilistic
representation, including that it (1) is mathematically well-defined and has been
studied extensively, (2) provides a common, well-established language for
communicating uncertainty, (3) allows the combination of subjective probabilities from
medical experts with statistics gathered from databases, and (4) can be naturally
extended to a decision-theoretic system that recommends actions to take. Nonetheless,
there are potential problems associated with using a probabilistic representation. Key
challenges include developing tractable methods for knowledge acquisition and
probabilistic inference. During the last three years we have addressed these two
problems using the belief-network representation. Belief networks provide a graphical
representation for efficiently and intuitively specifying the probabilistic dependencies
among domain variables. 1

Summary of the Results

In this section, we summarize our results on belief-network inference and acquisition.

Probabilistic inference

Studying and extending cutset conditioning

When we began work on this ARO project, Pearl had only recently described a new
belief-network inference algorithm based on message passing and cutset-conditioning
(call it the CC algorithm). We chose to initiate our study of belief-network inference
algorithms by implementing the CC algorithm; to our knowledge, we were the first to
implement the algorithm in its general form. In the process, we worked out many of .
the technical details that previously were unspecified [22]. In particular, we examined
cutset conditioning on multiply-connected networks. We proved that finding a
minimal cutset is NP-hard, and we developed and evaluated a heuristic for finding
small cutsets [19].

For a detailed discussion of the belief-network representation, see J. Pearl, Probabilistic Reasoning in ...

Intelligent Systems (Morgan Kaufnann, San Mateo, CA, 1988).
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An evaluation and combination of two previous algorithms

In 1988 Lauritzen and Spiegelhalter published a new algorithm for belief-network
inference based on clique-tree propagation, which we implemented (call it the CTP
algorithm). In [21] we analyze some of the strengths and weaknesses of the CC and the
CTP algorithms. We also empirically evaluated both algorithms on a 37-node network
called ALARM and found that the CTP algorithm performs probabilistic inference
significantly faster than the CC algorithm; in [11 we discuss the reasons why. The
insights gained from implementing and evaluating these two algorithms led us to
develop a hybrid algorithm that combines their strengths [211. In [201 we show
empirically that the hybrid algorithm decreases inference time when applied to the
Pathfinder knowledge base.

A new inference algorithm based on recursive decomposition

Although the hybrid algorithm performs well in many cases, there are cases when it
does not. We developed a new belief-network inference algorithm called recursive
decomposition (RD), which handles some of these cases efficiently [101. The basic idea of
recursive decomposition is to reduce a belief-network inference problem by dividing it
into a set of simpler problems. In one form, recursive decomposition bisects a network
B into subnetworks B1 and B2, using a set of nodes S, called the vertex separator set. The
decomposition procedure is applied recursively to successively smaller networks until
the resulting networks are so small that their solutions are immediate. The solutions to
the simpler problems are combined to solve the original problem. There are belief
networks for which some types of inferences are exponentially faster using recursive
decomposition than CC or CTP. Conversely, there are cases when CC or CTP is more
efficient than RD. Thus, RD, CC, and CTP are complementary in that each has its
relative strengths and weaknesses.

Complexity analysis of belief-network inference

In [8] we show that probabilistic inference on belief networks is NP-hard. Thus, it is not
surprising that researchers have been unable to find a general, exact algorithm that has
a polynomial time complexity in the worst case. Unfortunately, in practice there are
large, complex belief networks for which general, exact algorithms such as CC, CTP, and
RD perform inference too slowly [16, 18]. This led us to explore special-case algorithms
and approximation algorithms, which we now describe in turn.

Special-case algorithms

We can decrease the expected inference time by storing (precomputing) the answers to
inference problems that are likely to occur. In [13], we discuss methods for applying this
technique to belief-network inference. For the ALARM belief network [11, the
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precomputation led to a two-fold decrease in the expected time to answer a probabilistic
query [13]. We consider precomputing to be a special-case technique, because the answer
to a query may not always be precomputed due to limitations of storage and time
available for precomputation.

Approximation algorithms

Likelihood weighting (LW) is a Monte Carlo simulation method for belief-network
inference that was reported in 1989 by Shachter & Peot and by Fung & Chang. We
applied LW to the problem of inference on QMR-DT. In particular, for a set of findings,
we were interested in determining the posterior probability of each of 600 potential
causes of the findings. We assumed that multiple causes are possible. In [18] we describe
the QMR-DT model in detail. We compared the QMR-DT model to the QMR model
from which it was derived. QMR is a well-known medical diagnostic system developed
at the University of Pittsburgh over the last two decades. Previous evaluations of QMR
have demonstrated that it performs well in practice on difficult cases when compared
to clinicians. QMR uses a tailored, ad hoc scoring scheme for ranking diagnoses. Our
evaluation of QMR-DT, using LW as an inference algorithm, shows that its diagnostic
accuracy is comparable to that of QMR [16]. This result is encouraging, since QMR-DT
did not have access to some forms of knowledge that were available to QMR; thus, we
might expect QMR-DT's performance to improve further, after we extend its model.
Additional testing will be necessary to investigate the impact of such extensions.
Regarding computation time, our QMR-DT simulations required about 90 minutes per
case on a Macintosh IIci. In [17] we report our analysis of the specific extensions to the
basic LW algorithm that led to the most rapid convergence of the posterior
probabilities. Although 90 minutes is too slow to be very practical, there currently are
workstations that are several-fold faster than the Macintosh IIci; furthermore, in the
next decade we almost certainly will see further significant increases in hardware speed.
In addition, the LW algorithm is readily amenable to parallelization. On a parallel
computer, we can obtain a decrease in inference time for this task that is nearly
proportional to the number of processors [16]. Thus, even for large belief networks like
QMR-DT, LW seems to hold significant promise as a practical inference method.

In 1987 Pearl published an algorithm for Monte Carlo simulation of belief networks
based on Markov state transitions (called it the MST algorithm). Both MST and LW
lack a theory of convergence, which makes it difficult to know how long to run the
simulations. In one belief network, we observed during repeated simulations that the
MST algorithm got trapped in a portion of the Markov state space and did not
converge; in [6] we analyze why such traps occur and we offer some suggestions for
avoiding traps. We also derived a theoretical analysis of the worst-case expected
convergence of the MST algorithm [4], and in [24] we prove a tight worst-case bound.
We developed a derivative of MST called BN-RAS, and in [2] we evaluate the
convergence of BN-RAS on two belief networks. The results show that our worst-case
theoretical analysis is conservative relative to the empirical convergence that we
observed. In [5] we extend the convergence-analysis techniques to logic sampling, which
is another simulation method that is closely related to LW.
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So far, we have described methods for finding exact, point probabilities or for finding
estimates of probabilities using simulation. A third approach that we have explored is
to relax our goal to one of determining upper and lower posterior probabilities. In [15]
we show that usefully tight bounds are derivable in less time than is required to derive
point probabilities in the ALARM [1] domain. In [26] we further explore the derivation
of bounds and their practical significance.

Regarding belief-network inference, we have focused most of our efforts on efficiently
computing posterior probabilities of the form P(X I Y), where X and Y are sets of
instantiated variables (i.e., variables with known values). In [7], however, we show how
to use algorithms that compute P(X I Y) to compute P(S1 I S2), where S1 and S2 are well-
formed formulas in propositional logic (propositions).

Controlling probabilistic inference

In [14, 26] we describe our progress in developing decision-theoretic methods for
controlling probabilistic inference. In this work we address the question, "How long
and with which methods should a computer system deliberate about a probabilistic
inference problem before making a recommendation for how to act based on that
inference?" In particular, we investigated an approximation algorithm that
incrementally tightens bounds on posterior probabilities as more computation time is
expended. The critical question is: when are the bounds sufficiently tight for their
intended use? The answer to this question depends on a number of factors, including
(1) the stakes of the situation at hand, (2) the costs of deliberation, and (3) meta-level
knowledge about the expected value of continuing to reason. In the general case, there
may be uncertainty about all three of these factors. In [14, 26] we discuss some
theoretical principles of belief and action under bounded resources and incomplete
inference. We developed techniques that use information about the amount of time
required to solve previous complex problems in a domain to determine which
techniques to apply in solving current complex problems in that domain. In [26] we
describe in detail a graphics-based software system for experimenting with control of
probabilistic inference, along with experimental results from its application.

Acquisition of probabilistic models

Computer-assisted acquisition of belief networks from experts

We developed a general-purpose shell called KNET for constructing belief networks
using a graphical interface [24, 32]. A knowledge engineer enters a belief network
structure by drawing a directed acyclic graph on a monitor using a mouse. The KNET
architecture defines a complete separation between the user interface and a belief-
network inference-engine subsystem. The inference subsystem contains several of the
algorithms discussed in the previous section. A user can select an algorithm to apply in

2 This paper received first place in the student paper competition at the 1989 Symposium on Computer
Applications in Medical Care.
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a given case; this capability facilitated our experimentation with several of the inference
algorithms discussed in the previous section. We entered four different belief networks
using the KNET system. Our experience suggests that a graphical interface such as
KNET is useful for entering networks that contain up to several dozen nodes.

The acquisition and application of probabilistic models may be facilitated significantly
by having a system that can explain belief-network inference. For example, an expert
can use automatic explanations of test-case results as feedback during the belief-network
construction process. An explanation system also could provide additional insight
about inference results to the end user of a probabilistic expert system. Currently, we are
pursuing the development and evaluation of methods that explain the propagation of
probabilistic information along pathways in a belief network [23, 27]. Such explanations
can guide the process of editing and refining belief-network structures and probabilities.

Computer-based automated generation of probabilistic networks

As stated in the previous section, recent research has led to progress in developing
manual methods to improve the efficiency of knowledge acquisition directly from
experts. These methods are likely to remain important in domains of small to moderate
size in which there are readily available experts. Some domains, however, are large. In
others, there are few, if any, experts. Methods for assisting, or in some cases replacing,
the manual expert-based methods of knowledge acquisition are needed. We have
explored techniques for the automated construction of belief networks. One method
involves reducing a large, comprehensive model to a problem-specific model [11].
Another approach involves constructing belief networks from databases.

Databases are becoming increasingly abundant in many areas, including science,
engineering, and the military. In each of these areas, there are many potential
opportunities for using belief networks to provide assistance in decision making. By
using databases to assist in constructing belief networks, we may be able to significantly
decrease knowledge acquisition time. Automatically generated networks could be used
directly to provide decision-making assistance, or used as a starting point for
modification by an expert. In the latter case, the editing of a network may require
substantially less time than de novo generation of the network by an expert.

The automated construction of belief networks also can provide insight into the
probabilistic dependencies that exist among the domain variables. One application is the
automated discovery of dependency relationships. The computer program searches for a
belief-network structure that has a high posterior probability given the database, and
outputs the structure and its probability. A related task is computer-assisted hypothesis
testing: the user enters a hypothesized structure of the dependency relationships among
a set of variables and the program calculates the probability of the structure given a
database of cases on the variables. These applications clearly have the potential to effect
broad areas of discovery and data evaluation.

We have developed two techniques for constructing belief networks from databases.

One of them uses an entropy-based approach [121 and the other uses a Bayesian
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approach [9]. Preliminary results of these two techniques are promising. For example,
using the Bayesian approach, we attempted to reconstruct the ALARM belief
network [1] from a database of 3,000 cases that we generated earlier using ALARM. Of
the 46 arcs in ALARM, the reconstructed network had one arc not in ALARM (a false
positive) and it had one arc missing that is in ALARM (a false negative). A subsequent
analysis revealed that the missing arc is not strongly supported by the 3,000 cases. The
extra arc was added due to the greedy nature of the search algorithm we used. The
reconstruction required approximately 5 minutes when running on a Macintosh II
computer. In [25] we explore in detail the theory and empirical evaluation of the
entropy and Bayesian methods of automated belief-network construction from data. On
the basis of our current results and analysis, the Bayesian method appears to be the
preferred approach, due to its relative speed, sensitivity, and flexibility.

Summary

The objectives of this research project, as stated in the original proposal, are to develop
pragmatic and theoretically sound methods for the computation of probabilistic
information within expert systems. We began our investigation by implementing and
evaluating two previously developed exact inference algorithms, followed by the
development of a hybrid algorithm that combines their relative strengths.
Subsequently, we designed and implemented a new type of exact inference algorithm
based on recursive decomposition. Our conclusion regarding current exact algorithms
for belief-network inference is that each has its strengths and weaknesses; no one
algorithm is best for all inference problems. Furthermore, our analysis of the
theoretical complexity of the belief-network inference problem indicates that it is
unlikely we can develop an exact algorithm that is uniformly efficient (polynomial
time) across all networks and inference problems. This led us to investigate special-case
and approximation algorithms, as well as methods for controlling multiple algorithms
in solving a single inference problem. Our investigation indicates that moderately
complex belief-network expert systems can be constructed using these current methods.
Additional research is needed to understand better how to control the application of
multiple algorithms to solve a single probabilistic inference task. We are continuing to
explore this area of research.

The construction of complex belief networks also presents significant challenges. We
have developed automated and semiautomated knowledge-acquisition techniques that
show substantial promise in preliminary tests. The automated acquisition of belief
networks from databases appears to be particularly promising. We believe that further
exploration of automated methods for the acquisition of belief networks from databases
has excellent potential to yield significant new results.
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